
The Importance of Non-Data-Communication Overheads in MPI

P. Balaji1, A. Chan1, W. Gropp2, R. Thakur1 and E. Lusk1

1Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439, USA

{balaji, chan, thakur, lusk}@mcs.anl.gov

2Department of Computer Science,

University of Illinois, Urbana, IL, 61801, USA

wgropp@illinois.edu

Abstract

With processor speeds no longer doubling every 18-24 months owing to the exponential increase in power

consumption and heat dissipation, modern HEC systems tend to rely lesser on the performance of single

processing units. Instead, they rely on achieving high-performance by using the parallelism of a massive

number of low-frequency/low-power processing cores. Using such low-frequency cores, however, puts a

premium on end-host pre- and post-communication processing required within communication stacks, such

as the message passing interface (MPI) implementation. Similarly, small amounts of serialization within

the communication stack that were acceptable on small/medium systems can be brutal on massively parallel

systems.

Thus, in this paper, we study the different non-data-communication overheads within the MPI implemen-

tation on the IBM Blue Gene/P system. Specifically, we analyze various aspects of MPI, including the MPI

stack overhead itself, overhead of allocating and queueing requests, queue searches within the MPI stack,

multi-request operations and various others. Our experiments, that scale up to 131,072 cores of the largest

Blue Gene/P system in the world (80% of the total system size), reveal several insights into overheads in

the MPI stack, which were previously not considered significant, but can have a substantial impact on such

massive systems.

1 Introduction

Today’s leadership class systems have already crossed the petaflop barrier. As we move further into the petaflop

era, and look forward to multi petaflop and exaflop systems, we notice that modern high-end computing (HEC)

systems are undergoing a drastic change in their fundamental architectural model. Due to the exponentially

increasing power consumption and heat dissipation, processor speeds no longer double every 18-24 months.

Accordingly, modern HEC systems tend to rely lesser on the performance of single processing units. Instead,

they try to extract parallelism out of a massive number of low-frequency/low-power processing cores.

The IBM Blue Gene/L [4] was one of the early supercomputers to follow this architectural model, soon followed

by other systems such as the IBM Blue Gene/P (BG/P) [11] and the SiCortex SC5832 [5]. Each of these systems

uses processing cores that operate in a modest frequency range of 650–850 MHz. However, the capability of

these systems is derived from the number of such processing elements they utilize. For example, the largest Blue

Gene/L system today, installed at the Lawrence Livermore National Laboratory, comprises of 286720 cores.

Similarly, the largest Blue Gene/P system, installed at the Argonne National Laboratory, comprises of 163840

cores.

While such an architecture provides the necessary ingredients for building petaflop and larger systems, the actual

performance perceived by users heavily depends on the capabilities of the systems-software stack used, such

1



as the message passing interface (MPI) implementation. While the network itself is quite fast and scalable on

these systems, the local pre- and post-data-communication processing required by the MPI stack might not be

as fast, owing to the low-frequency processing cores. For example, local processing tasks within MPI that were

considered quick on a 3.6 GHz Intel processor, might form a significant fraction of the overall MPI processing

time on the modestly fast 850 MHz cores of a BG/P. Similarly, small amounts of serialization within the MPI

stack which were considered acceptable on a system with a few hundred processors, can be brutal when running

on massively parallel systems with hundreds of thousands of cores.

These issues raise the fundamental question on whether systems software stacks on such architectures would

scale with system size, and if there are any fundamental limitations that researchers have to consider for future

systems. Specifically, while previous studies have focused on communication overheads and the necessary im-

provements in these areas, there are several aspects that do not directly deal with data communication but are still

very important on such architectures. Thus, in this paper, we study the non-data-communication overheads in

MPI, using BG/P as a case-study platform, and perform experiments to identify such issues. We identify various

bottleneck possibilities within the MPI stack, with respect to the slow pre- and post-data-communication pro-

cessing as well as serialization points, and stress these overheads using different benchmarks. We further analyze

the reasons behind such overheads and describe potential solutions for solving them.

The remaining part of the paper is organized as follows. We present a brief overview of the hardware and software

stacks on the IBM BG/P system in Section 2. Detailed experimental evaluation examining various parts of the

MPI stack are presented in Section 3. We present other literature related to this work in Section 4. Finally, we

conclude the paper in Section 5.

2 BG/P Hardware and Software Stacks

In this section, we present a brief overview of the hardware and software stacks on BG/P.

2.1 Blue Gene/P Communication Hardware

BG/P has five different networks [12]. Two of them, 10-Gigabit Ethernet and 1-Gigabit Ethernet with JTAG

interface1, are used for File I/O and system management. The other three networks, described below, are used

for MPI communication:

3-D Torus Network: This network is used for point-to-point MPI and multicast operations and connects all

compute nodes to form a 3-D torus. Thus, each node has six nearest-neighbors. Each link provides a

bandwidth of 425 MBps per direction for a total of 5.1 GBps bidirectional bandwidth per node.

Global Collective Network: This is a one-to-all network for compute and I/O nodes used for MPI collective

communication and I/O services. Each node has three links to the collective network for a total of 5.1GBps

bidirectional bandwidth.

Global Interrupt Network: It is an extremely low-latency network for global barriers and interrupts. For

example, the global barrier latency of a 72K-node partition is approximately 1.3µs.

On the BG/P, compute cores do not handle packets on the torus network. A DMA engine on each compute

node offloads most of the network packet injecting and receiving work, so this enables better overlap with of

computation and communication. The DMA interfaces directly with the torus network. However, the cores

handle the sending/receiving packets from the collective network.

1JTAG is the IEEE 1149.1 standard for system diagnosis and management.

2



2.2 Deep Computing Messaging Framework (DCMF)

BG/P is designed for multiple programming models. The Deep Computing Messaging Framework (DCMF) and

the Component Collective Messaging Interface (CCMI) are used as general purpose libraries to support different

programming models [17]. DCMF implements point-to-point and multisend protocols. The multisend protocol

connects the abstract implementation of collective operations in CCMI to targeted communication networks.

DCMF API provides three types of message-passing operations: two-sided send, multisend and one-sided get.

All three have nonblocking semantics.

SPI

Message layer core (C++)

DCMF API (C)

Network hardware (DMA, collective network,

global interrupt network)

Application
L

o
w

-l
ev

el
 A

P
I

CCMI collective

layer (barrier,

broadcast, allreduce)

H
ig

h
-l

ev
el

 A
P

I

DMA

device

GI

device

Collective

device

MPICH
Global

arrays

Point-to-point

protocols

Multisend

protocols 

ARMCI

primitives

UPC

messaging

Converse/

Charm++

Figure 1: BlueGene/P Messaging Framework: CCMI=Component Collective Messaging Interface; DCMF=Deep

Computing Messaging Framework; DMA=Direct Memory Access; GI=Global Interrupt; SPI=System Program-

ming Interface. From IBM’s BG/P overview paper [11].

2.3 MPI on DCMF

IBM’s MPI on BG/P is based on MPICH2 and is implemented on top of DCMF. Specifically, the MPI on BG/P

implementation borrows most of the upper-level code from MPICH2, including the ROMIO implementation

of MPI-IO and MPE profiler, while implementing BG/P specific details within a device implementation called

dcmfd. The DCMF library provides basic send/receive communication support. All advanced communication

features such as allocation and handling of MPI requests, dealing with tags and unexpected messages, multi-

request operations such as MPI Waitany or MPI Waitall, derived datatype processing and thread synchro-

nization are not handled by the DCMF library and have to be taken care of by the MPI implementation.

3



3 Experiments and Analysis

In this section, we study the non-data-communication overheads in MPI on BG/P.

3.1 Basic MPI Stack Overhead

An MPI implementation can be no faster than the underlying communication system. On BG/P, this is DCMF.

Our first measurements (Figure 2) compare the communication performance of MPI (on DCMF) with the com-

munication performance of DCMF. For MPI, we used the OSU MPI suite [23] to evaluate the performance. For

DCMF, we used our own benchmarks on top of the DCMF API, that imitate the OSU MPI suite. The latency test

uses blocking communication operations while the bandwidth test uses non-blocking communication operations

for maximum performance in each case.

MPI Stack Overhead (Latency)

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message size (bytes)

L
a

te
n

c
y
 (

u
s
)

DCMF

MPI

MPI Stack Overhead (Bandwidth)

0

500

1000

1500

2000

2500

3000

3500

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s
)

DCMF

MPI

Figure 2: MPI stack overhead

The difference in performance of the two stacks is the overhead introduced by the MPI implementation on BG/P.

We observe that the MPI stack adds close to 1.1µs overhead for small messages; that is, close to 1000 cycles are

spent for pre- and post-data-communication processing within the MPI stack. We also notice that for message

sizes larger than 1KB, this overhead is much higher (closer to 4µs or 3400 cycles). This additional overhead

is because the MPI stack uses a protocol switch from eager to rendezvous for message sizes larger than 1200

bytes. Though DCMF itself performs the actual rendezvous-based data communication, the MPI stack performs

additional book-keeping in this mode which causes this additional overhead. In several cases, such redundant

book-keeping is unnecessary and can be avoided.

3.2 Request Allocation and Queueing Overhead

MPI provides non-blocking communication routines that enable concurrent computation and communication

where the hardware can support it. However, from the MPI implementation’s perspective, such routines require

managing MPI Request handles that are needed to wait on completion for each non-blocking operation. These

requests have to be allocated, initialized and queued/dequeued within the MPI implementation for each send or

receive operation, thus adding overhead, especially on low-frequency cores.

4



Request Allocation and Queueing

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message size (bytes)

L
a

te
n

c
y
 (

u
s
)

Blocking

Non-blocking

Request Allocation and Queueing (Overhead)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K

Message size (bytes)

O
v
e

rh
e

a
d

 (
u

s
)

Figure 3: Request allocation and queuing: (a) Overall performance; (b) Overhead.

In this experiment, we measure this overhead by running two versions of the typical ping-pong latency test—

one using MPI Send and MPI Recv and the other using MPI Isend, MPI Irecv, and MPI Waitall. The

latter incurs the overhead of allocating, initializing, and queuing/dequeuing request handles. Figure 3 shows that

this overhead is roughly 0.4 µs or a little more than 300 clock cycles.2 While this overhead is expected due

to the number of request management operations, carefully redesigning them can potentially bring this down

significantly.

3.3 Overheads in Tag and Source Matching

MPI allows applications to classify different messages into different categories using tags. Each sent message

carries a tag. Each receive request contains a tag and information about which source the message is expected

from. When a message arrives, the receiver searches the queue of posted receive requests to find the one that

matches the arrived message (both tag and source information) and places the incoming data in the buffer de-

scribed by this request. Most current MPI implementations use a single queue for all receive requests, i.e., for all

tags and all source ranks. This has a potential scalability problem when the length of this queue becomes large.

To demonstrate this problem, we designed an experiment that measures the overhead of receiving a message

with increasing request-queue size. In this experiment, process P0 posts M receive requests for each of N peer

processes with tag T0, and finally one request of tag T1 for P1. Once all the requests are posted (ensured through

a low-level hardware barrier that does not use MPI), P1 sends a message with tag T1 to P0. P0 measures the time

to receive this message not including the network communication time. That is, the time is only measured for the

post-data-communication phase to receive the data after it has arrived in its local temporary buffer.

Figure 4 shows the time taken by the MPI stack to receive the data after it has arrived in the local buffer. Fig-

ures 4(a) and 4(b) show two different versions of the test—the first version keeps the number of peers to one (N =

1) but increases the number of requests per peer (M ), while the second version keeps the number of requests per

peer to one (M = 1) but increases the number of peers (N ). For both versions, the time taken increases rapidly

with increasing number of total requests (M × N ). In fact, for 4096 peers, which is modest considering the

size BG/P can scale to, we notice that even just one request per peer can result in a queue parsing time of about

2This overhead is more than the entire point-to-point MPI-level shared-memory communication latency on typical commodity In-

tel/AMD processors [13].

5



Request Matching Overhead vs. Number of Requests

0

50

100

150

200

250

300

350

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Requests

R
e

q
u

e
s
t 
M

a
tc

h
in

g
 T

im
e

 (
u

s
)

Request Matching Overhead vs. Number of Peers

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of peers

R
e

q
u

e
s
t 
M

a
tc

h
in

g
 T

im
e

 (
u

s
)

Figure 4: Request matching overhead: (a) requests-per-peer, (b) number of peers.

Request Matching Overhead per Request

0

5

10

15

20

25

30

35

4 8 16 32 64 128 256 512 1024 2048 4096

Number of peers

R
e

q
u

e
s
t 
M

a
tc

h
in

g
 T

im
e

 (
u

s
)

Figure 5: Matching overhead per request

140000µs.

Another interesting observation in the graph is that the time increase with the number of peers is not linear.

To demonstrate this, we present the average time taken per request in Figure 5—the average time per request

increases as the number of requests increases! Note that parsing through the request queue should take linear

time; thus the time per request should be constant, not increase. There are several reasons for such a counter-

intuitive behavior; we believe the primary cause for this is the limited number of pre-allocated requests that are

reused during the life-time of the application. If there are too many pending requests, the MPI implementation

runs out of these pre-allocated requests and more requests are allocated dynamically.

6



3.4 Algorithmic Complexity of Multi-request Operations

MPI provides operations such as MPI Waitany, MPI Waitsome and MPI Waitall that allow the user to

provide multiple requests at once and wait for the completion of one or more of them. In this experiment, we

measure the MPI stack’s capability to efficiently handle such requests. Specifically, the receiver posts several re-

ceive requests (MPI Irecv) and once all the requests are posted (ensured through a low-level hardware barrier)

the sender sends just one message that matches the first receive request. We measure the time taken to receive

the message, not including the network communication time, and present it in Figure 6.

Waitany Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of requests

T
im

e
 (

u
s
)

Figure 6: MPI Waitany Time

We notice that the time taken by MPI Waitany increases linearly with the number of requests passed to it. We

expect this time to be constant since the incoming message matches the first request itself. The reason for this

behavior is the algorithmic complexity of the MPI Waitany implementation. While MPI Waitany would

have a worst-case complexity of O(N), where N is the number of requests, its best-case complexity should be

constant (when the first request is already complete when the call is made). However, the current implementation

performs this in two steps. In the first step, it gathers the internal request handles for each request (takes O(N)

time) and in the second step does the actual check for whether any of the requests have completed. Thus, overall,

even in the best case, where the completion is constant time, acquiring of internal request handlers can increase

the time taken linearly with the number of requests.

3.5 Overheads in Derived Datatype Processing

MPI allows non-contiguous messages to be sent and received using derived datatypes to describe the message.

Implementing these efficiently can be challenging and has been a topic of significant research [16, 25, 8]. De-

pending on how densely the message buffers are aligned, most MPI implementations pack sparse datatypes into

contiguous temporary buffers before performing the actual communication. This stresses both the processing

power and the memory/cache bandwidth of the system. To explore the efficiency of derived datatype commu-

nication on BG/P, we looked only at the simple case of a single stride (vector) type with a stride of two. Thus,

every other data item is skipped, but the total amount of data packed and communicated is kept uniform across

the different datatypes (equal number of bytes). The results are shown in Figure 7.

7



Derived Datatype Latency (Large Messages)

0

500

1000

1500

2000

2500

3000

256 512 1K 2K 4K 8K 16K 32K
Message size (bytes)

L
a

te
n

c
y
 (

u
s
)

Contiguous

Vector-Char

Vector-Short

Vector-Int

Vector-Double

Derived Datatype Latency (Small Messages)

0

2

4

6

8

10

12

14

16

8 16 32 64 128
Message size (bytes)

L
a

te
n

c
y
 (

u
s
)

Contiguous Vector-Char

Vector-Short Vector-Int

Vector-Double

Figure 7: Derived datatype latency: (a) long messages and (b) short messages

These results show a significant gap in performance between sending a contiguous messages and a non-contiguous

message (with the same number of bytes). The situation is particularly serious for a vector of individual bytes

(MPI CHAR). It is also interesting to look at the behavior for shorter messages (Figure 7(b)). This shows, roughly,

a 2 µs gap in performance between contiguous send and a send of short, integer or double precision data with a

stride of two.

3.6 Buffer Alignment Overhead

For operations that involve touching the data that is being communicated (such as datatype packing), the align-

ment of the buffers that are being processed can play a role in overall performance if the hardware is optimized

for specific buffer alignments (such as word or double-word alignments), which is common in most hardware

today.

In this experiment (Figure 8), we measure the communication latency of a vector of integers (4 bytes) with a stride

of 2 (that is, every alternate integer is packed and communicated). We perform the test for different alignment

of these integers—“0” refers to perfect alignment to a double-word boundary, “1” refers to an misalignment

of 1-byte. We notice that as long as the integers are within the same double-word (0-4 byte misalignment) the

performance is better as compared to when the integers span two different double-words (5-7 byte misalignment),

the performance difference being about 10%. This difference is expected as integers crossing the double-word

boundary require both the double-words to be fetched before any operation can be performed on them.

3.7 Unexpected Message Overhead

MPI does not require any synchronization between the sender and receiver processes before the sender can

send its data out. So, a sender can send multiple messages which are not immediately requested for by the

receiver. When the receiver tries to receive the message it needs, all the previously sent messages are considered

unexpected, and are queued within the MPI stack for later requests to handle. Consider the sender first sending

multiple messages of tag T0 and finally one message of tag T1. If the receiver is first looking for the message

with tag T1, it considers all the previous messages of tag T0 as unexpected and queues them in the unexpected

8



Buffer Alignment Overhead on Datatype Processing

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7
Byte alignment

L
a

te
n

c
y
 (

u
s
)

8 bytes
64 bytes
512 bytes
4 Kbytes
32 Kbytes

Buffer Alignment Overhead (without 32Kbytes)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
Byte alignment

L
a

te
n

c
y
 (

u
s
) 8 bytes

64 bytes

512 bytes

4 Kbytes

Figure 8: Buffer alignment overhead

Unexpected Message Overhead vs. Number of Requests

0

20

40

60

80

100

120

140

160

180

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Unexpected Requests

M
e

s
s
a

g
e

 M
a

tc
h

in
g

 T
im

e
 (

u
s
)

Unexpected Message Overhead vs. Peers

0

1000

2000

3000

4000

5000

6000

7000

8000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of peers

M
e

s
s
a

g
e

 M
a

tc
h

in
g

 T
im

e
 (

u
s
)

Figure 9: Unexpected message overhead: (a) Increasing number of messages per peer, with only one peer; (b)

Increasing number of peers, with only one message per peer.

queue. Such queueing and dequeuing of requests (and potentially copying data corresponding to the requests)

can add overhead.

To illustrate this, we designed an experiment that is a symmetric-opposite of the tag-matching test described in

Section 3.3. Specifically, in the tag-matching test, we queue multiple receive requests and receive one message

that matches the last queued request. In the unexpected message test, we receive multiple messages, but post

only one receive request for the last received message. Specifically, process P0 first receives M messages of tag

T0 from each of N peer processes and finally receives one extra message of tag T1 from P1. The time taken to

receive the final message (tag T1) is measured, not including the network communication time, and shown in

Figure 9 as two cases: (a) when there is only one peer, but the number of unexpected messages per peer increases

(x-axis), and (b) the number of unexpected messages per peer is one, but the number of peers increases. We see

that the time taken to receive the last message increases linearly with the number of unexpected messages.

9



3.8 Overhead of Thread Communication

To support flexible hybrid programming model such as OpenMP plus MPI, MPI allows applications to perform

independent communication calls from each thread by requesting for MPI THREAD MULTIPLE level of thread

concurrency from the MPI implementation. In this case, the MPI implementation has to perform appropriate

locks within shared regions of the stack to protect conflicts caused due to concurrent communication by all

threads. Obviously, such locking has two drawbacks: (i) they add overhead and (ii) they can serialize communi-

cation.

We performed two tests to measure the overhead and serialization caused by such locking. In the first test, we use

four processes on the different cores which send 0-byte messages to MPI PROC NULL (these messages incur all

the overhead of the MPI stack, except that they are never sent out over the network, thus imitating an infinitely

fast network). In the second test, we use four threads with MPI THREAD MULTIPLE thread concurrency to send

0-byte messages to MPI PROC NULL. In the threads case, we expect the locks to add overheads and serialization,

so the performance to be lesser than in the processes case.

Threads vs. Processes

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4
Number of Cores

M
e

s
s
a

g
e

 R
a

te
 (

M
M

P
S

) Threads

Processes

Figure 10: Threads vs. Processes

Figure 10 shows the performance of the two tests described above. The difference between the one-process and

one-thread cases is that the one-thread case requests for the MPI THREAD MULTIPLE level of thread concur-

rency, while the one-process case requests for no concurrency, so there are no locks. As expected, in the process

case, since there are no locks, we notice a linear increase in performance with increasing number of cores used.

In the threads case, however, we observe two issues: (a) the performance of one thread is significantly lower than

the performance of one process and (b) the performance of threads does not increase at all as we increase the

number of cores used.

The first observation (difference in one-process and one-thread performance) points out the overhead in main-

taining locks. Note that there is no contention on the locks in this case as there is only one thread accessing them.

The second observation (constant performance with increasing cores) reflects the inefficiency in the concurrency

model used by the MPI implementation. Specifically, most MPI implementations perform a global lock for each

MPI operation thus allowing only one thread to perform communication at any given time. This results in virtu-

10



ally zero effective concurrency in the communication of the different threads. Addressing this issue is the subject

of a separate paper [9].

3.9 Error Checking Overhead

Error Checking Overhead (Bandwidth)

0

1

2

3

4

5

6

7

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M 4M

Message size (bytes)

P
e

rc
e

n
ta

g
e

 O
v
e

rh
e

a
d

Figure 11: Error checking overhead

Since MPI is a library, it is impossible for the MPI implementation to check for user errors in arguments to

the MPI routines except at runtime. These checks cost time; the more thorough the checking, the more time

they take. MPI implementations derived from MPICH2 (such as the BG/P MPI) can be configured to enable or

disable checking of user errors. Figure 11 shows the percentage overhead of enabling error checking. For short

messages, it is about 5% of the total time, or around 0.1-0.2 µs. This overhead is relative small compared to

the other overheads demonstrated in this paper, but should ideally be further reduced, by letting the user specify

which parts of the code she would prefer to have error checking enabled, for example.

3.10 Non-Data Overheads in Sparse Vector Operations

A number of MPI collectives also have an associated vector version, such as MPI Gatherv, MPI Scatterv,

MPI Alltoallv and MPI Alltoallw. These operations allow users to specify different data counts for dif-

ferent processes. For example, MPI Alltoallv and MPI Alltoallw allow applications to send a different

amount of data to (and receive a different amount of data from) each peer process. This model is frequently

used by applications to perform nearest neighbor kind of communication. Specifically, each process specifies 0

bytes for all processes in the communicator other than its neighbors.3 The PETSc library [24], for example, uses

MPI Alltoallw in this manner.

For massive-scale systems such as Blue Gene/P, however, such communication would often result in a sparse

data count array since the number of neighbors for each process is significantly smaller than the total number of

3We cannot perform such communication easily by using subcommunicators as each process would be a part of many subcommuni-

cators, potentially causing deadlocks and/or serializing communication.

11



Figure 12: Zero-byte Alltoallv Communication

processes in the system. Thus, the MPI stack would spend a significant amount of time parsing the mostly empty

array and finding the actual ranks of processes to which data needs to be sent to or received from. This overhead

in illustrated in Figure 12 under the legend “original”, where we measure the performance an extreme case of a

sparse MPI Alltoallv in which all data counts are zero. Performance numbers are shown for varying system

sizes up to 131072 cores.

Together with the original scheme, we also present three different enhancements that allow can potentially allow

the MPI library reduce this overhead, as described below.

No Error Checks (NEC): While useful for debugging and development, library-based runtime error checking,

as described in Section 3.9, is generally an overhead for production runs of applications. Especially in the case

of collective operations that take large arrays as input parameters, checking each array element for correctness is

time consuming. Thus, we evaluated the performance of MPI Alltoallv as described above (with zero data

count) but after disabling error checks; this is illustrated under the legend “No Error Checks (NEC)”. We notice

that this enhancement gives about 25% benefit as compared to the base case (i.e., “Original”).

No Mod Operator (NMO): In order to optimize the internal queue search time (as described in Sections 3.3

and 3.7), MPICH2 uses an offset-based loop to pick which destination to post a receive request from and a

send request to. Specifically, this offset-based loop is implemented using a “%” arithmetic operator, so that a

destination is picked as follows:

for i from 0 to communicator size

destination = (rank + i) % communicator size

if data to send(destination) != 0

send data(destination)

However, the “%” operator is an expensive operation on many architectures including x86 and PowerPC4. This

is just an example of various operations that do not form a part of the first level optimizations, but can hamper

performance on large-scale systems with moderately fast processors. That is, a few additional cycles per peer

process would not cost too much on a fast processor or for a small number of peer processes. However, on

systems such as BG/P, this can be a large performance bottleneck.

A simple approach to avoid using this operator, is to manually split the loop into two loops, one going from rank

4More details about this issue can be found here [6].

12



to the communicator size, and the other going from zero to rank, as follows:

for i from rank to communicator size

if data to send(i) != 0

send data(destination)

for i from 0 to (rank - 1)

if data to send(i) != 0

send data(destination)

This avoids the expensive “%” operator and improves performance significantly as illustrated in Figure 12.

Dual-register Loading: Many current processors allow for some vector-processor like operations allowing mul-

tiple registers to be loaded with a single instruction. The BG/P processor (PowerPC), in a similar manner, allows

two 32-bit registers to be simultaneously loaded. Thus, since the data count array comprises of integers (which

are 32-bit on BG/P), this allows us to compare two elements of the array to zero simultaneously. This can im-

prove performance for sparse arrays without hurting performance for dense arrays. As illustrated in Figure 12,

this benefit can be significant.

4 Related Work and Discussion

There has been significant previous work on understanding the performance of MPI on various architectures [20,

19, 18, 15, 10, 7]. However, all of this work mainly focuses on data communication overheads, which though

related, is orthogonal to the study in this paper. Further, though not formally published, there are also proposals to

extend MPI (in the context of MPI-3 [21]) to work around some of the overheads of existing collective operations

such as MPI Alltoallv for sparse communication.

Finally, there has also been a significant amount of work recently to understand whether MPI would scale to such

massively large systems, or if alternative programming models are needed. This includes work in extending MPI

itself [21] as well as other models including UPC [1], Co-Array Fortran [2], Global Arrays [3], OpenMP [22] and

hybrid programming models (MPI + OpenMP [14], MPI + UPC). Some studies performed in this paper (such as

request allocation and queueing overheads, buffer alignment overheads, overheads of multi-threading, and error

checking) are independent of the programming model itself, and thus are relevant for other programming models

too. However, some other studies in the paper (such as derived datatypes, MPI Alltoallv communication)

are more closely tied to MPI. For such parts, though they might not be directly relevant to other programming

models, we believe that they do give an indication of potential pitfalls other models might run into as well.

5 Concluding Remarks

In this paper, we studied the non-data-communication overheads within MPI implementations and demonstrated

their impact on the IBM Blue Gene/P system. We identified several bottlenecks in the MPI stack including

request handling, tag matching and unexpected messages, multi-request operations (such as MPI Waitany),

derived-datatype processing, buffer alignment overheads and thread synchronization, that are aggravated by the

low processing capabilities of the individual processing cores on the system as well as scalability issues triggered

by the massive scale of the machine. Together with demonstrating and analyzing these issues, we also described

potential solutions for solving these issues in future implementations.

13



Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under

Contract DE-AC02-06CH11357 and in part by the Office of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy award DE-FG02-08ER25835.

References

[1] Berkeley Unified Parallel C (UPC) Project. http://upc.lbl.gov/.

[2] Co-Array Fortran. http://www.co-array.org/.

[3] Global Arrays. http://www.emsl.pnl.gov/docs/global/.

[4] http://www.research.ibm.com/journal/rd/492/gara.pdf.

[5] http://www.sicortex.com/products/sc5832.

[6] http://elliotth.blogspot.com/2007 07 01 archive.html, 2007.

[7] S. Alam, B. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth, R. Sankaran, J. Vetter,

P. Worley, and W. Yu. Early Evaluation of IBM BlueGene/P. In SC, 2008.

[8] P. Balaji, D. Buntinas, S. Balay, B. Smith, R. Thakur, and W. Gropp. Nonuniformly Communicating

Noncontiguous Data: A Case Study with PETSc and MPI. In IPDPS, 2007.

[9] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. Toward Efficient Support for Multithreaded

MPI Communication. In the Proceedings of the Euro PVM/MPI Users’ Group Meeting, Dublin, Ireland,

2008.

[10] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Non-Data-Communication Overheads in MPI:

Analysis on Blue Gene/P. In Euro PVM/MPI Users’ Group Meeting, Dublin, Ireland, 2008.

[11] Overview of the IBM Blue Gene/P project. http://www.research.ibm.com/journal/rd/521/team.pdf.

[12] IBM System Blue Gene Solution: Blue Gene/P Application Development. http://www.redbooks.ibm.com/

redbooks/pdfs/sg247287.pdf.

[13] D. Buntinas, G. Mercier, and W. Gropp. Implementation and Shared-Memory Evaluation of MPICH2 over

the Nemesis Communication Subsystem. In Euro PVM/MPI, 2006.

[14] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on IBM SP for the NAS benchmarks.

In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM),

page 12, Washington, DC, USA, 2000. IEEE Computer Society.

[15] A. Chan, P. Balaji, R. Thakur, W. Gropp, and E. Lusk. Communication Analysis of Parallel 3D FFT for

Flat Cartesian Meshes on Large Blue Gene Systems. In HiPC, Bangalore, India, 2008.

[16] W. Gropp, E. Lusk, and D. Swider. Improving the Performance of MPI Derived Datatypes. In MPIDC,

1999.

14



[17] S. Kumar, G. Dozsa, G. Almasi, D. Chen, M. Giampapa, P. Heidelberger, M. Blocksome, A. Faraj, J. Parker,

J. Ratterman, B. Smith, and C. Archer. The Deep Computing Messaging Framework: Generalized Scalable

Message Passing on the Blue Gene/P Supercomputer. In ICS, 2008.

[18] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas, P. Wyckoff, and D. K. Panda. Per-

formance Comparison of MPI Implementations over InfiniBand Myrinet and Quadrics. In Supercomputing

2003: The International Conference for High Performance Computing and Communications, Nov. 2003.

[19] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and B. Toonen. Design and

Implementation of MPICH2 over InfiniBand with RDMA Support. In Proceedings of Int’l Parallel and

Distributed Processing Symposium (IPDPS ’04), April 2004.

[20] J. Liu, J. Wu, S. Kini, R. Noronha, P. Wyckoff, and D. K. Panda. MPI Over InfiniBand: Early Experiences.

In IPDPS, 2002.

[21] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, March 1994.

[22] Venkatesan Packirisamy and Harish Barathvajasankar. Openmp in multicore architectures. Technical report,

University of Minnesota.

[23] D. K. Panda. OSU Micro-benchmark Suite. http://mvapich.cse.ohio-state.edu/benchmarks.

[24] PETSc library. http://www.mcs.anl.gov/petsc.

[25] R. Ross, N. Miller, and W. Gropp. Implementing Fast and Reusable Datatype Processing. In Euro

PVM/MPI, 2003.

15


